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Abstract: Wear debris-induced inflammation is considered to

be the main cause for periprosthetic osteolysis in total hip

replacements (THR). The objective of this retrieval study was

to examine the tissue reactions and exposure to metal ions

and wear particles in periprosthetic tissues and blood sam-

ples from patients with titanium (Ti)-based hip prostheses

that were revised due to wear, osteolysis, and/or aseptic loos-

ening. Semiquantitative, histological tissue evaluations in 30

THR-patients revealed numerous wear debris-loaded macro-

phages, inflammatory cells, and necrosis in both groups. Par-

ticle load was highest in tissues adjacent to loosened

cemented Ti stems that contained mainly submicron zirco-

nium (Zr) dioxide particles. Particles containing pure Ti and

Ti alloy elements were most abundant in tissues near

retrieved uncemented cups. Polyethylene particles were also

detected, but accounted only for a small portion of the total

particle number. The blood concentrations of Ti and Zr

were highly elevated in cases with high abrasive wear and

osteolysis. Our findings indicate that wear particles of differ-

ent chemical composition induced similar inflammatory

responses, which suggests that particle size and load might

be more important than the wear particle composition in

periprosthetic inflammation and osteolysis. VC 2014 Wiley

Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 00B:

000–000, 2014.
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INTRODUCTION

Total hip replacements (THR) generally have a good clinical
outcome in the majority of patients. However, some patients
require revision surgery at some stage. Aseptic loosening
due to periprosthetic osteolysis is still the major cause for
revision.1,2 Debris generated by wear of the bearing surfaces
and loosened components are thought to be the main cause
for periprosthetic inflammation leading to osteolysis, which
is affected by particle characteristics, such as particle size,
load, shape, and chemical reactivity.1–3 It has been found
that micrometer and nanometer-sized particulate wear
debris is co-localized with inflammatory responses in
tissues around loosened implants.4,5 Adverse local tissue
reactions to metal debris, such as lymphocyte infiltration,
proinflammatory cytokine release from macrophages, multi-
nuclear giant cell formation and necrosis have mainly been
associated with metal-on-metal hip prostheses.6 In addition
to local responses, metal debris may spread over the whole

body via systemic circulation (i.e., lymph and blood). They
have been identified in the macrophages of various distinct
organs such as liver and spleen.7 However, the impact of
wear debris on these organs is not fully determined.

Degradation products released from metallic implants
cannot only occur in the form of particulate wear debris,
but also as inorganic metal salts or free metal ions. Metal
ions are generated due to physicochemical processes, such
as crevice8 and galvanic corrosion, or cellular digestion
mechanisms.9 Increased ion release was an early concern
with cementless hip prostheses because of the increased
surface area of metal in the porous coated designs.10–12

Moreover, measurement of zirconium (Zr) in blood has been
proposed as an indicator for bone cement debris degrada-
tion and loosening of cemented hip implants, when Zr is
present in the polymethylmethacrylate matrix.13 Other
implant-derived metal ions such as cobalt (Co), chromium
(Cr), and titanium (Ti) have been shown to increase bone
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resorption and osteoclast differentiation in vitro,14–16 which
suggests a contribution of metal ions in the mechanism of
osteolysis. Titanium and its alloys are still the most used
material for bone fixation with successful osseointegration17

and the level of Ti-ion release is low under normal
circumstances.

This retrieval study was conducted to grade the inflam-
matory tissue reactions and assess the exposure to wear
debris and metal ions in tissues surrounding Ti-based hip
prostheses. These findings were correlated to systemic and
local ion levels recorded in these patients.

MATERIAL AND METHODS

Patients
From our retrieval biobank, we selected blood and tissue
samples from 30 patients with Ti-based hip implants that
had been revised due to wear, osteolysis, and/or aseptic
loosening (Table I). The retrievals had been consecutively
collected in the period of 2008 to 2012 from four hospitals
in Norway. We found it convenient to divide the patients in

two groups by fixation status of the prosthesis: Fifteen
patients had loose cemented stems, but well-fixed cemented
cups. The Ti alloy stems (TitanVR ) were cemented using Pal-
acos bone cement [Palacos G (Schering-Plough), Palacos
Refobacin (Merck), Palacos R1G (Heraeus)], containing
radio-opaque ZrO2 particles. The cemented cups showed no
sign of failure and were not revised.

The other fifteen patients had worn and loose unce-
mented cups, but well-fixed stems. The uncemented cups
that were revised had metal-backing made of Ti alloy either
coated with a porous commercially pure Ti [Tri-Lock Plus
and Gemini (DePuy)] or with a sintered Ti fiber mesh at the
bone-implant interface [Harris/Galante I/II and Trilogy
(Zimmer)]. One patient had a metal-backing that was
threaded and blasted with hydroxyapatite (Tropic, DePuy);
the others were hemispherical and intended for press-fit
and/or screw fixation. The liners were conventional ultra-
high molecular weight polyethylene (UHMWPE) sterilized
by gamma irradiation in air or in an inert atmosphere. The
uncemented Ti alloy stem (Profile, DePuy) was in all cases

TABLE I. Patient Data, Implant Duration, and Reasons for Revision

Case No.
Gender, Age at
Retrieval (yr) Duration (months) Reason for Revision

Uncementeda

1 M, 51 214 Cup loosening
2 F, 70 196 PE wear, pain
3 M, 65 167 Acetabular osteolysis, loosening
4 F, 68 160 Cup loosening
5 F, 78 173 Acetabular osteolysis, cup loosening
6 F, 72 185 Acetabular osteolysis, PE wear
7 F, bNA 228 Acetabular osteolysis, PE wear
8 M, 44 200 PE wear
9 F, 54 174 Acetabular osteolysis, PE wear
10 F, 77 87 PE wear
11 M, 53 167 Acetabular osteolysis, PE wear, pain
12 F, 76 232 Acetabular osteolysis, PE wear
13 M, 70 222 Cup loosening
14 M, 76 220 PE wear, acetabular osteolysis
15 F, 56 200 PE wear, acetabular osteolysis
Cementedc

16 M, 78 69 Femoral osteolysis, stem loosening
17 F, 71 52 Femoral osteolysis, stem loosening
18 F, 50 99 Femoral osteolysis, stem loosening
19 M, 79 70 Femoral osteolysis, stem loosening
20 M, 64 72 Femoral osteolysis, stem loosening
21 M, 73 24 Femoral osteolysis, stem loosening
22 M, 78 97 Femoral osteolysis, stem loosening
23 M, 77 74 Femoral osteolysis, stem loosening
24 M, 69 18 Femoral osteolysis, stem loosening
25 M, 80 105 Femoral osteolysis, stem loosening
26 F, 67 90 Femoral osteolysis, stem loosening
27 F, 76 98 Femoral osteolysis, stem loosening
28 F, 62 141 Femoral osteolysis, stem loosening
29 M, 71 89 Femoral osteolysis, stem loosening
30 bNA, 70 75 Femoral osteolysis, stem loosening

a Uncemented TiAlV femoral stems (Profile, DePuy) and uncemented metal-backed cups with conventional UHMWPE liners. The head material

in these cases was CoCr, except for case nr. 1 (alumina).
b NA: not available.
c Cemented femoral stems and PE-liners (TiAlV, TitanVR , DePuy). The head materials were mainly CoCr exept for cases: 17, 20, and 28

(alumina).
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well-fixed and not revised. Additional information about the
patients and prosthesis materials was provided by the
Norwegian Arthroplasty Register (Table I).

Histologic evaluation
Periprosthetic tissue samples from the joint capsule, the
acetabular membrane, osteolytic lesions, or sites with evi-
dence of metallosis were collected at revision surgery and
fixed in 4% buffered formalin. Paraffin-embedded specimens
were sectioned to a thickness of 5 mm and stained with hae-
matoxylin and eosin (H&E). Tissue slides from all patients
were semi-quantitatively evaluated by two senior patholo-
gists (HKH, PKL) in a blinded fashion using a modified
Mirra classification18 described by Doorn et al.19 The inten-
sity was graded as absent (0), low (11), moderate (21), or
high (31) (Table II). Using light microscopy, three high
power fields (HPF, 403) per tissue section with high cellu-
lar concentration were counted and graded for acute and
chronic inflammatory cells, histiocytes, foreign body giant
cells, necrosis, and the amount of metal particles.

Particle characteristics were measured in the same sec-
tions with High-Resolution Optical Darkfield Microscopy
(HR-ODM; Auburn, Al) as described by Flateb� et al.20 Using
photographs (403), the total amount of foreign body par-
ticles, particle density, equivalent diameter, and circularity
(0–1) were determined with image analysis software
(NIS-Elements 2.30, Nikon, Japan). Birefringent PE particles
were identified by polarization microscopy (403) and
counted in a specified rectangular area with defined steps
using a MicroStepperTM stepping stage with the associated
software (PetrogLite, Conwy Valley Systems).

Particle isolation for analysis of morphology and
chemical composition
Particles were isolated from the tissue samples using a
modified enzymatic digestion method.21,22 All solutions/
buffers were sterile-filtered before use. Approximately 0.2 g
tissue (wet weight) was sliced into small pieces and washed

4 times with phosphate-buffered saline (PBS; Gibco,
659457), pH 6.8. PBS containing 5 mM L-Cystine (Sigma,
C8755) was added and the sample was sonicated at 70%
amplitude for 1 min using a VibraCell probe sonicator (Son-
ics, VCX 130). The tissue was incubated with papain (Sigma,
P3125) in a 65�C shaking water bath for 24 h. Following
centrifugation (Eppendorf 5810R) at 3220g for 30 min, the
pellet was resuspended in an enzyme cocktail containing
Proteinase K (MB-1120100), Pronase (Roche, 10165921001),
and Collagenase (Roche, 10103586001) and incubated at
37�C for 24 h. After centrifugation, Tris-HCl buffer (Sigma,
T5941) containing 20 mg Proteinase K was added to the
pellet and the tissue suspension incubated at 55�C for 24 h.
Following sonication at 70% amplitude for 1 min, Proteinase
K was replenished and the sample was allowed to incubate
in a 55�C shaking water bath for 24 h. The enzyme
suspension was aspirated, collected in a second tube, and
centrifuged at 16.000g for 30 min. The particle suspension
was washed with 100% ethanol, diluted 1:20 in water,
and sequentially filtered through membrane filters (What-
man, Ø 47 mm) with the pore sizes of 10, 1, 0.1, and
0.02 mm. The isolated particles were observed using a field
emission scanning electron microscope (FE-SEM; Supra-55VP,
Carl Zeiss AG, Germany) and their chemical composition was
determined by energy dispersive X-ray spectroscopy (Thermo
Fisher Scientific, MA). The supernatant from the last centrifu-
gation step was ultra-centrifuged (110.000g) to remove any
residual particulates and analyzed for ionic Ti and Zr concen-
tration in the tissue samples.

Quantification of metal ion levels in tissue and blood
Whole blood samples (5–10 mL) were taken just prior to
revision surgery from the patient’s forearm through an intra-
venous catheter, 1.3 3 4.5 mm (Becton Dickinson Venflon TM
Pro, Helsingborg, Sweden) into metal-free, polypropylene
tubes (VWR, Oslo, Norway) and stored at 220�C. The concen-
tration of Ti and Zr in blood and enzymatically digested tissue
samples were determined by High-Resolution-Inductively

TABLE II. Modified Mirra Classification Used to Assess Tissue Reactions and Wear Particle Load in Periprosthetic Tissue

Samples

Histology 0 11 21 31

Acute inflammatory
cells (neutrophils)

0 cells/HPFa 1–5 cells/HPF 6–49 cells/HPF 50 or more/HPF

Mononuclear histiocytes 0 cells/HPF 1–5 cells/HPF 6–49 cells/HPF 50 or more/HPF
Chronic inflammatory

cells (lymphocytes, plasma
cells, lymphoid follicles)

0 cells/HPF 1–9 cells/HPF 10–49 cells/HPF 50 or more/HPF

Giant cells (multinucleated
histiocytes)

0 cells/HPF 1 cell/HPF 2–4 cells/HPF 5 or more
cells/HPF

Metal particles Normal colored
histiocytes (no
visible, black
metal particles
per histiocyte)

Slate blue
histiocytes
(<10 visible,
black metal
particles per
histiocyte)

Dusty black
histiocytes (10
to 100 visible,
black Metal
particles per
histiocyte)

Jet black
histiocytes
(>100 visible,
black metal
particles per
histiocyte)

Necrosis 0 mm of
necrosis/slide

1–2 mm of
necrosis/slide

3–9 mm of
necrosis/slide

>1 cm of
necrosis/slide

a HPF: high power field (340).

ORIGINAL RESEARCH REPORT

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH B: APPLIED BIOMATERIALS | MONTH 2014 VOL 00B, ISSUE 00 3



Coupled Plasma-Mass Spectrometry (HR-ICP-MS; Element
2 Thermo Finnigan, Bremen, Germany). Prior to metal
analysis, an aliquot of �1.5 g whole blood or 0.5 mL tissue
supernatant was mixed with 3 mL 60% HNO3 (Merck,
Darmstadt, Germany) and 2 mL 30% H2O2 (Sigma-Aldrich,
Germany) and digested in a microwave-assisted system
(Milestone 1200 Mega, Sorisole, Italy). A blank and Sero-
norm reference blood sample (Sero AS, Oslo, Norway) were
treated the same way as the test samples. After digestion,
deionized water (MilliQ, Millipore) was added to the
samples to a total dilution of 60–70.

Statistical analysis
Statistical analysis was done using GraphPad Prism 6
(GraphPad Software, La Jolla, CA). Data is presented as
medians accompanied by an interquartile range (IQR) when
the data was skewed, tested with D’Agostino and Pearson
omnibus normality test. Otherwise, data is given as means
with ranges. The Mann-Whitney U test was used to deter-
mine statistical significant differences between the studied
groups. Relationships between different parameters were
analyzed using Spearman’s rho correlation. Results were
considered statistically significant when p< 0.05.

Ethics
The project protocol and the biobank have been approved
by the Regional Committee for Medical Research Ethics–
Western Norway (REK number 2010/2817). The study was
performed on coded samples, with written informed con-
sent from every patient prior to blood and tissue sampling.

RESULTS

The mean age at retrieval of the 15 patients in the
cemented group was 71 years (50–80 years) and the mean
time until revision was 6.5 years (1.5–11.8 years) (Table I).
In the uncemented group, the mean age at retrieval was 65
years (44–78 years) and the mean time until revision was

15.7 years (7–19.3 years). Radiographs illustrating the typi-
cal appearance of osteolysis and loosening in each patient
group are shown in Figure 1(A,B). Acetabular osteolysis is
apparent in Figure 1(A) and osteolysis around the femoral
stem is shown in Figure 1(B).

Histology
Histological tissue examination revealed numerous mononu-
clear histiocytes, lymphocytes, a few neutrophils and multi-
nucleated giant cells in all patients. These inflammatory cell
types were slightly more abundant in tissues associated
with the uncemented cups (Table III). Necrosis, or more
specifically coagulative necrosis, which was observed as
lighter stained tissue areas, was found to be more promi-
nent in tissues surrounding the cemented stem. Forty seven
percent of these cases were graded as 31, which is the
highest grade in the Mirra classification. Diffusely distrib-
uted mononuclear histiocytes were the most prominent cell
type in the periprosthetic tissues. A histiocytic grade of 31

was given in 76% of the cases (Table III). Most histiocytes
had ingested or were associated with wear particles, seen
as black spots inside/on the cells. Chronic inflammatory
cells, that is, lymphocytes, were randomly distributed
between the histiocytes and not as abundant as these cells.
In some cases (e.g., no. 5 and 15), lymphocytes were found
in clusters [Figure 2(A)]. A few, mainly perivascular located
neutrophils were found. Multinucleated giant cells with
ingested foreign material were observed in 57% of the
cases (grade 11 and 21) [Figures 2(A,B) and 3].

Particle analysis
Different microscopy techniques and energy-dispersive
X-ray analysis (Figure 4) indicated that implant wear prod-
ucts originated from different sources. Tissues around
cemented stems contained mainly submicron ZrO2 particles,
originating from bone cement degradation, but also some Ti
alloy particles worn off from the stem. Particles containing
pure Ti and Ti alloy elements were most abundant in tissues
adjacent to the uncemented cups. A higher particle load
(median cemented5 14,727 particles/mm2, IQR517,019 vs.
median uncemented5 1519 particles/mm2, IQR53776;
p< 0.001) was found in tissues adjacent to cemented stems
(Table IV). Image analysis revealed particle equivalent diame-
ters in the range of 0.12–6.46 mm in the uncemented group,
with >50% of the particles being�0.4 mm (Figure 5). The
median equivalent diameter of particles (0.42 mm and
IQR50.1) was smaller than in the cemented group (0.55
mm, IQR5 0.185, and p50.034). The observed ZrO2 particles
were more uniform in their round shape than the Ti and Ti
alloy particles, which had a more polygonal shape.

Polyethylene particles (PE) (Figure 6) were found in
almost all tissue samples and were generally more abundant
in the tissues adjacent to the uncemented cups (median
uncemented52.8 PE/mm2, IQR58.1 vs. median cemented5

0.8 PE/mm2, IQR52.4, and p5 0.053). The PE particles
accounted only for a small portion of total number of par-
ticles in all samples (8% around uncemented cups, 0.24%
around cemented stems). The size of PE particles ranged

FIGURE 1. Radiological images illustrating the reason for revision in

both studied patient groups. A: Wear and acetabular osteolysis and/or

aseptic loosening of the cup were the reasons for revision in the

uncemented group. B: Femoral osteolysis and stem loosening were

the reasons for revision in the cemented group.
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from submicron to over 100 mm along one dimension. Large
PE particles (>100 mm) were in some cases associated with
giant cells (p50.291).

In tissues around cemented stems, the total number of
particles positively correlated with the amount of mononu-

clear histiocytes (r5 0.92, p<0.001), chronic inflammatory
cells (r5 0.92, p<0.001), multinucleated giant cells
(r5 0.63, p5 0.036), and neutrophils (r51.00, p<0.001). A
similar trend was also observed in the tissues surrounding
the uncemented cups (ns).

TABLE III. Periprosthetic Tissue Reactions in Patients with Uncemented Metal-Backed Cups and Cemented Titanium Stems

Case No.
Mononuclear
Histiocytes

Chronic
Inflammatory Cells

Multinucleated
Giant Cells Neutrophils

Metal
Particles/Histiocytes Necrosis

Uncemented
1 21 31 0 21 11 0
2 31 21 21 11 21 21

3 31 21 21 21 11 21

4 0 0 0 0 0 31

5 31 31 0 21 11 21

6 31 21 0 11 11 21

7 31 21 11 21 11 31

8 31 21 21 21 11 21

9 31 21 11 11 31 21

10 31 21 21 21 21 0
11 31 21 0 21 0 31

12 31 21 0 11 11 11

13 31 21 21 21 11 21

14 31 11 11 11 31 21

15 31 31 21 21 11 11

Cemented
16 31 21 11 11 21 21

17 0 0 0 0 0 31

18 0 0 0 0 0 31

19 0 0 0 0 0 31

20 31 21 11 11 21 11

21 31 21 11 11 21 21

22 31 21 11 21 21 31

23 31 21 11 21 21 21

24 21 11 0 11 11 21

25 31 21 0 11 21 31

26 31 21 0 11 21 11

27 31 21 11 11 21 21

28 31 21 11 11 11 21

29 21 11 0 11 11 31

30 31 21 11 11 21 31

Uncemented cups: tissue samples were taken from the joint capsule and/or the acetabular membrane; cemented stems: tissue samples were

taken from the proximal femur, distal femur, or the femur channel.

FIGURE 2. Light microscopy images of periprosthetic tissues. A: Lymphocyte infiltration (black arrows pointing to dark violet cell cluster on the

left side) and multinucleated giant cells (red arrows; case no. 15 with uncemented metal-backed cup); H&E, 203. B: Multinucleated giant cells

(black arrows) containing metal particles (Ti and ZrO2; case no. 20 with cemented Ti stem); H&E, 403.
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Metal ion analysis
The median Ti concentrations in whole blood samples in
patients with loose cemented stems (n510) and loose
uncemented cups (n513) were 10.5 mg/L (IQR56.1) and
21.1 mg/L (IQR5 71.2), respectively (p50.73) [Figure
7(A)]. In uncemented cases with high abrasive wear and
metallosis, Ti concentrations over 100 mg/L were detected.
The median Zr concentrations in blood in patients with
loose cemented stems (n5 10) and loose uncemented cups
(n5 13) were 1.87 mg/L (IQR50.64) and 0.37 mg/L
(IQR5 0.56), respectively, (p5 0.002) [Figure 7(B)]. The
concentrations of Ti (r50.77 and p5 0.024) and Zr
(r50.71 and p5 0.044) in whole blood were proportional
to the number of wear particles/mm2 in the tissue sections.
The ionic Ti and Zr concentrations in the enzymatically
digested periprosthetic tissues were 10 to 100 times higher
than in the blood samples: The two samples from the
cemented group showed, as expected, the highest Zr concen-
tration (82.6 and 166.6 mg/L), compared with the sample
from the uncemented group (11.6 mg/L). Ti concentrations
were 1284 and 1405.8 mg/L in the cemented cases and
329.2 mg/L in the uncemented case.

DISCUSSION

Implant wear and associated immune reactions to wear
debris are considered to be an important factor in the onset
of osteolysis and aseptic loosening of hip implants. Previous
studies have shown that the accumulation of submicron and
micron-sized wear debris initiates a foreign body inflamma-
tory reaction, which includes the activation of histiocytes (tis-
sue macrophages) and the influx of other immune cells like
lymphocytes and neutrophils.23,24 The presence of neutro-
phils in our analyzed tissue samples suggests that newly gen-

erated wear debris induced acute inflammatory responses in
the soft tissue adjacent to the implant. The apparent, rela-
tively strong pronounced coagulative necrosis (>80% of the
tissue samples had a grade of 21 and more) could be a sign
of hypersensitivity.25

The continuous production of wear debris, activation of
macrophages, ingestion of wear debris, and release of proin-
flammatory cytokines and other mediators can cause
inflammatory-mediated morphological changes in the tissue,
which contribute to osteolysis and implant loosening. In this
study, we have shown that the periprosthetic tissues of
patients with revised Ti-based hip implants contain various
types of metallic degradation products, bone cement debris
and PE particles, which all might have contributed to the
inflammatory tissue responses we have observed.

FIGURE 3. Darkfield microscopy image (H&E, 1003) showing a multi-

nucleated foreign body giant cell (green arrow) containing metal par-

ticles (case no. 14). Metal particles inside the cells appear white;

nuclei appear black (red arrows).

TABLE IV. Particle Characterization Using Digital Images

(403 Magnification) of Periprosthetic Tissues from Patients

with Uncemented Metal-Backed Cups and Cemented

Titanium Stems

Case No.

Particle
Density

(per mm2)

Median
Equivalent

Diameter (mm)
Median

Circularity

PE
density

(per mm2)

Uncemented
1 1413 0.57 0.85 1.7
2 14,719 0.36 N/A 1.9
3 1626 0.42 0.95 27.8
4 8114 0.42 1 11.5
5 2641 0.36 1 0.6
6 117 0.47 0.82 0
7 1214 1.05 0.92 7.3
8 5357 0.36 1 3.0
9 N/A N/A N/A 23.6
10 1338 0.42 1 4.4
11 69 2.6 N/A 0.2
12 3827 0.52 0.98 24.9
13 185 0.56 N/A 1.7
14 8937 0.42 N/A 1.4
15 1193 0.45 1 2.8
Cemented
16 6897 0.59 N/A 0.6
17 14,922 0.47 N/A 3.6
18 13,041 0.51 N/A 2.8
19 14,727 0.51 N/A 3.0
20 9878 0.51 N/A 2.4
21 32,428 0.51 N/A 2.1
22 3664 0.55 N/A 0.2
23 21,098 1.05 0.86 4.9
24 14,164 0.7 1 0.8
25 9610 0.7 0.83 0
26 33,619 0.51 N/A 0
27 42,675 0.69 N/A 0.2
28 7902 0.42 1 0.3
29 35,592 0.73 0.95 0.9
30 14,987 0.6 0.9 0.3

N/A: Particle characteristic could not be measured appropriately.

Images were taken with High-Resolution Optical Darkfield Micros-

copy (HR-ODM). Total number of particles, particle density, median

equivalent diameter, and median circularity were measured using NIS

Elements image analysis software. Polyethylene particles (PE) were

counted (total number and particle density) using a polarization

microscope with a motorized table.
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It has been proposed that local periprosthetic tissue
inflammation is affected by particle characteristics, like par-
ticle size,26 load, shape and chemical reactivity.1 Hallab
et al. suggested that the local inflammatory response is pro-

portional to the particle load in the tissue.1 We found a pos-
itive correlation between the histological grade of the tissue
responses and the total number of particles. All tissue sam-
ples had a high particle load. Tissues around the cemented
stems contained 10 fold more particles than the tissues
around the cups, but both patient cohorts were sufficiently
exposed to wear debris to induce foreign body reactions.

The ZrO2 particles, which originated from bone cement
degradation, are extremely hard ceramic particles that are
embedded as agglomerates in the bone cement matrix. The
primary particles retain their uniform size and round or
ovoid shape during wear processes. We found these par-
ticles relatively dispersed in the tissue, mostly internalized
by histiocytes. Particles found in tissues from the unce-
mented cases were often polygonal and varied more in size,
which may be attributed to different wear processes. Larger,
pure Ti fragments were possibly broken off from the metal-
backing moving against the bone, while smaller particles
were probably generated when the femoral head wore
through the PE-liner into the Ti alloy cup. Both ZrO2 and Ti-

FIGURE 4. Scanning electron microscopy (SEM) images with EDXA

spectra of isolated particles (white arrows). A: SEM image, left side: Sec-

ondary emission: showing all particles on the filter. SEM image, right

side: backscattered, highlighting dense ZrO2 particles typically found in

tissues near cemented stems (case no. 25). B: Ti particles, such as parti-

cle 3 in backscattered image, were most frequent in tissues around the

uncemented cups. C: Ti alloy particle from an uncemented case (no. 5).

These particles were also found around the cemented stems.

FIGURE 5. Frequency distribution of the equivalent diameter (mm) of

the particles counted in the uncemented and cemented cases.

FIGURE 6. Polarization microscopy image (H&E, 203) showing bire-

fringent PE particles (red arrows) in the tissue (case no. 9). Metal deg-

radation products appear in black (green arrows).
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based wear debris were of submicron size. Cellular uptake
and thus cellular responses to wear debris is affected by
particle size. Nanometer- and submicron-sized particles are
generally taken up by phagocytic cells through various
endocytic pathways. The uptake of metal particles <150 nm
was found to be mediated through receptor-mediated endo-
cytosis and pinocytosis.27 Larger particles (>100 mm) are
not as easily ingested as smaller particles by phagocytic
cells. In response, tissue macrophages may fuse to form
multinucleated giant cells. These multinucleated giant cells
may not only have formed in the attempt to ingest larger
particles, but also to cope with the enormous amount of
smaller particles observed in the tissue samples.

In addition to ZrO2 and Ti-based particles, we also iden-
tified PE particles in the tissue samples using polarized light
microscopy. These particles had an irregular shape and
ranged from micron (�1 mm) to larger, spindle-shaped par-
ticles (>100 mm) that were partially associated with multi-
nucleated giant cells. In vitro studies have shown that
exposure to PE particles within the phagocytic size range
(0.1–10 mm) results in activation of macrophages,28,29 lead-

ing to release of cytokines that modulate osteoclast activa-
tion and osteolysis. In this study large PE particles (>100
mm) were in some cases observed within giant cells, but the
total amount of PE particles did not correlate with the num-
ber of giant cells, which is in contrast to the findings by Ito
et al.30 However, in our study the observed number of PE
particles accounted unexpectedly only for a small portion of
the total number of particles. This might be due to detection
limitations with the polarized microscopy technique and
most probably not due to sampling bias, since the tissue
samples were taken from the joint capsule or the fibrous
tissue behind the cup or osteolytic lesions. In the cemented
cases, the PE cups were intact and the wear minor. In con-
trast, all liners from the uncemented cups were worn,
although it must be noted that these cups failed quite late
(Table I). In a post mortem retrieval study, Urban et al.
characterized some well functioning uncemented acetabular
components (Harris-Galante I) after a mean of eleven years
in situ, but with particle induced granulomas and progres-
sion of osteolysis.17

Implant-derived metal ions have been shown to contrib-
ute to the mechanism of osteolysis by increasing bone
resorption and osteoclast differentiation in vitro.14,15 Ele-
vated concentrations of metal ions were measured in human
body fluids and tissue samples from THR patients.11,12 Dorr
et al.11 found Ti-concentrations ranging from 38 to 602 mg/L
in the blood from subjects with osteolysis around Ti alloy
implants, which is in line with our findings. It is expected
that the metal ion concentrations in the periprosthetic tissues
were 100–1000 fold higher than in the blood stream. Com-
pared with previous findings11,31 our estimates show slightly
lower metal ion concentrations in the tissue samples from
related retrievals. This might be due to methodological differ-
ences between the studies. A method for separation and
quantification of particle debris and ionic forms in tissue
samples was developed in this study. We suggest that our
method better separates between particulate metal debris
and soluble forms. However, only a limited number of
samples were analyzed, so further validation is necessary.

To our knowledge, there are only a few methods avail-
able in the literature to precisely quantify and speciate par-
ticulate debris and ionic forms.32,33 Thus, the precise metal
ion concentration in tissue samples surrounding hip
implants still remains unclear. There is evidence that the
osteolytic effect of metal ions might have been underesti-
mated in previous studies. It is therefore necessary to fur-
ther study the exact role of metal ions in the mechanism of
osteolysis around Ti-based hip implants. In summary, we
conclude that different types of wear debris induced a simi-
lar inflammatory response in tissues adjacent to Ti-based
hip implants revised for wear, osteolysis and/or loosening.
Particle size, load, and metal ions might be more important
factors than particle composition in the onset of inflamma-
tory tissue responses eventually leading to osteolysis.
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